Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation.
نویسندگان
چکیده
The formation of base-pairing between the branch-site (BS) sequence and the U2 snRNP is an important step in mRNA splicing. We developed a new algorithm to identify both the BS sequence and the polypyrimidine tract (PPT) and validated its predictions experimentally. To assess BS conservation between human and mouse, we assembled and analyzed 46 812 and 242 constitutively and alternatively spliced orthologs of human-mouse intron pairs, respectively. Combinations of BSs and PPTs can be found in most of the constitutive and alternative introns. The average distance between the BS and the 3' splice site (3'ss) is 33-34 nt. Acceptor-like AG dinucleotides that resided between the predicted BS and the 3'ss were found to appear mostly within 5 nt, but not more than 19 nt, downstream of the BS. However, although 32% of homologous alternatively spliced BS sequences were fully conserved between human and mouse, only a small fraction (3%) of homologous constitutive counterparts was fully conserved. This indicates that the full sequence of the BS is under weak purifying selection in constitutively spliced introns and further strengthens the view that the BS sequence is just one of several factors determining the ability of the splicing machinery to identify the BS location. Mutations in the putative BS revealed a shift from constitutive to alternative splicing, and it also controls the inclusion/skipping ratio in alternative splicing. This suggests a role for BS sequences in regulated splicing.
منابع مشابه
Analysis of in situ pre-mRNA targets of human splicing factor SF1 reveals a function in alternative splicing
The conserved pre-mRNA splicing factor SF1 is implicated in 3' splice site recognition by binding directly to the intron branch site. However, because SF1 is not essential for constitutive splicing, its role in pre-mRNA processing has remained mysterious. Here, we used crosslinking and immunoprecipitation (CLIP) to analyze short RNAs directly bound by human SF1 in vivo. SF1 bound mainly pre-mRN...
متن کاملWobble splicing reveals the role of the branch point sequence-to-NAGNAG region in 3' tandem splice site selection.
Alternative splicing involving the 3' tandem splice site NAGNAG sequence may play a role in the structure-function diversity of proteins. However, how 3' tandem splice site utilization is determined is not well understood. We previously demonstrated that 3' NAGNAG-based wobble splicing occurs mostly in a tissue- and developmental stage-independent manner. Bioinformatic analysis reveals that the...
متن کاملLarge-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes.
Introns are among the hallmarks of eukaryotic genes. Splicing of introns is directed by three main splicing signals: the 5' splice site (5'ss), the branch site (BS), and the polypyrimdine tract/3'splice site (PPT-3'ss). To study the evolution of these splicing signals, we have conducted a systematic comparative analysis of these signals in over 1.2 million introns from 22 eukaryotes. Our analys...
متن کاملUnusual Intron Conservation near Tissue-Regulated Exons Found by Splicing Microarrays
Alternative splicing contributes to both gene regulation and protein diversity. To discover broad relationships between regulation of alternative splicing and sequence conservation, we applied a systems approach, using oligonucleotide microarrays designed to capture splicing information across the mouse genome. In a set of 22 adult tissues, we observe differential expression of RNA containing a...
متن کاملThe New Phase of Transcriptome Analysis
We have established a large-scale system named CAGE (CAP-based analysis of gene expression), for identifying the 5' Transcription Start Sites (TSS) and promoter regions. With this system we have obtained over 10,000,000 CAGE tags from human and mouse. We have also determined the sequences of more than 100,000 full-length cDNAs from mouse, which were subsequently used to study the transcriptiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2005